Spatial confinement of ultrasonic force fields in microfluidic channels.

نویسندگان

  • Otto Manneberg
  • S Melker Hagsäter
  • Jessica Svennebring
  • Hans M Hertz
  • Jörg P Kutter
  • Henrik Bruus
  • Martin Wiklund
چکیده

We demonstrate and investigate multiple localized ultrasonic manipulation functions in series in microfluidic chips. The manipulation functions are based on spatially separated and confined ultrasonic primary radiation force fields, obtained by local matching of the resonance condition of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific external transducers with refracting wedges placed on top of the chips. The force field in each channel segment is characterized by the use of micrometer-resolution particle image velocimetry (micro-PIV). The confinement of the ultrasonic fields during single- or dual-segment actuation, as well as the cross-talk between two adjacent fields, is characterized and quantified. Our results show that the field confinement typically scales with the acoustic wavelength, and that the cross-talk is insignificant between adjacent fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where flow-through-mode operation of a chip with flow splitting elements is used for two-dimensional pre-alignment and addressable merging of particle tracks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination Ultrasonic- Dielectrophoretic Particle Traps for Particle Trapping and Sample Purification in a Microfluidic Channel

Ultrasonic and dielectrophoretic particle manipulation have been studied for particle trajectory modification and particle trapping in microfluidic channels. We report an approach that combines dielectrophoresis (DEP) and ultrasonic fields to trap and concentrate particles and cells in an aqueous suspension. By simultaneously applying electric and ultrasonic fields to the sample, the favorable ...

متن کامل

Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity.

We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the chamber center, where the cells are trapped. We investigate the resonant modes in the expansion chamb...

متن کامل

Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip

We analyze and optimize the design of wedge transducers used for the excitation of resonances in the channel of a microfluidic chip in order to efficiently manipulate particles or cells in more than one dimension. The design procedure is based on (1) theoretical modeling of acoustic resonances in the transducer–chip system and calculation of the force fields in the fluid channel, (2) full-syste...

متن کامل

SOME POINTS ON CASIMIR FORCES

Casimir forces of massive ferrnionic Dirac fields are calculated for parallel plates geometry in spatial space with dimension d and imposing bag model boundary conditions. It is shown that in the range of ma>>l where m is mass of fields quanta and a is the separation distance of the plates, it is equal to massive bosonic fields Casimir force for each degree of freedom. We argue this equalit...

متن کامل

A microfluidic-based hydrodynamic trap: design and implementation.

We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 2009